Retraction reaction…

The recent retraction of the Séralini study by the journal of Food and Chemical Toxicology journal (more at Retraction Watch) has been a hot topic over the past few weeks.  The editors of the journal wrote a letter (Letter_AWHayes_GES (1)) to Seralini on November 19, 2013, inviting him to voluntarily withdraw the article.  In the event that Séralini chose not to do so, the editors informed him that they would retract the article.  Apparently, Séralini opted not to withdraw and the article was retracted by the editors in late November.

The Séralini study should never have been published in the first place. There were fundamental problems with the study (even grammar errors) which makes me question the quality of peer review — not to mention the low number of rats used and lack of controls.

Sample size and controls, in this case, represent huge red flags. There are well articulated Organization for Economic and Cooperative Development (OECD) guidelines about numbers of rats required for experimental purposes in studies of this nature. And for Séralini to draw such broad sweeping conclusions based on a shoddy study results is inappropriate. We can’t forget that Séralini also violated science based rules regarding the ethical treatment of rats. Those rats suffered needlessly. See the European Food Safety Authority’s review of the study and a more simplified overview of the “Séralini Affair” on Wikipedia.

Soon after the study was published, it was discredited by independent scientists and food and feed safety authorities all over the world (orgs that discredit seralini study). Sadly, it appears that the European Commission is going to invest big bucks to replicate the study.  Fortunately, the work will be done by independent scientists.  And if they use the proper protocols and controls, they will likely reach conclusions that we can hang a ‘good science hat’ on although I’d be awfully surprised if the results will vary at all from current scientific consensus.  So what a colossal waste of money, especially when research money is so scarce! (See Kevin Folta’s rant (er…post) on this: Throwing Euros Down a Rat Hole).

seralini blog

Séralini probably spent in excess of 3 M Euros on his study (2012). An enormous amount of money. And he made such FUNDAMENTAL mistakes in developing and executing the methodology. Any funder Séralini had for this study should be less than satisfied with how things were managed and how experimental protocols were executed. Unless, of course, they were just interested in the PR and political shenanigans that came with it. Then the outcomes would be exactly what they would want. Which means that other agenda(s) were involved and there was no real interest in having the subject matter objectively investigated.

We can’t hold progressive and innovative science to such low standards as was demonstrated by the Séralini study. Society deserves better than that. It will be interesting to see what happens from here on in. Rumour has it that Séralini has hired a US law firm to take legal action against the journal for the retraction. More PR genius. And more to come, I’d wager.

There’s no room in science for provocateurs

How many times do we have to deal with the folly and fall-out of sub-standard science?  In her letter titled “Future of Meat” dated October 24, 2013, J. MacPherson references the same ol’, same ol’ ill-reputed studies to challenge something that is no longer an issue: the safety of genetically engineered crops and food.

After eating three trillion servings of genetically modified foods, not so much as a tummy ache has been reported by anyone.   Over 750 studies conducted over a span of 25+ years affirm the safety of genetically engineered foods and crops. Many of these are conducted by independent, public-sector scientists.  We call this ‘scientific consensus.’

The Séralini, Carman and Krueger studies are each guilty of three or more of the following: 1) a poorly executed methodology (where correlation is used to imply causation, among other things); 2) weak statistical analyses; 3) poor use of controls; 4) inappropriate sample sizes; 5) spelling and grammar errors; 6) and the authors refuse to release data or methods so that other scientists can replicate the work.  These missing or weak elements violate the basic tenets of ‘good science’ and standardized protocols that have been established for centuries.

But why do these same ol’, same ol’ studies keep getting regurgitated in the media and continue to pop up on the Internet complete with hype and ugly photos?  The answer is two-part: 1) human cognitive habits’ and 2) our attachment to mobile technology and social media.

We are Internet junkies – referred to as ‘just in time’ users.  Almost 70% of North Americans consult Google or social media platforms for information or to get answers to their questions.  We are tapped in. Further complicating matters are our human cognitive habits. We are conspiratorial thinkers. If you think that the omniscient presence of mobile technology and access to cameras 24/7 would have conclusively settled questions about flying saucers, lake monsters, Bigfoot and ghosts, think again. We are also conformists and we always seek out our personal networks to ask questions and seek information that validates our beliefs or our ‘world views.’  We like to think in pictures and we have a habit of finding meaningful patterns in meaningless information. That’s why we see the ‘man in the moon’ and the Virgin Mary on pieces of toast.  Finally, humans love a good (sometimes horrific) story.  Storytelling is an important part of our social fabric. Think about it, before we could write, we have been telling stories as a way to illustrate simple moral lessons or to teach and learn. The only difference is that we don’t do it on cave walls anymore.  We do it on the fast moving social media trains of Facebook, Twitter and LinkdIn.

send a curse

In combination, our networking behaviour and our human cognitive habits leave us open to all kinds of misinformation.  Science isn’t easy to understand and science certainly isn’t sexy.  So, when studies conducted by the likes of Séralini, Carman and Krueger magically make it through the peer-review process, most of us that understand what ‘good science’ is are left scratching our heads in frustration.  Make no mistake, these so-called ‘studies’ have political agendas driving them.  They are designed, promoted and circulated in such a way that its feeds into our fears and our biases.  The studies (and their authors) are highly provocative – nothing more. And, quite simply, there is no room in objective, evidence-based science for provocateurs.

Speaking of provocative – – – Did you know that the publication of the Séralini study in September of 2012 was neatly bundled with a well-promoted press conference, a book launch as well as a movie – all in the same week?  This is ‘unheard of’ in reputable science circles.  This suggests that Séralini had set out to “prove” something rather than to objectively “investigate” something (in ‘good science’, scientists pose a hypothesis and set out to disprove it). In advance of the publication, Séralini also asked journalists to sign a Non-Disclosure Agreement  (NDA).  This meant that journalists’ could not consult with any third party experts in order to report on the study in a responsible and balanced way.  No self-respecting academic scientist would require an NDA.  (Please note: health and food safety organizations the world over have discredited the Séralini study).

But let’s dig look at the peer-review process a bit closer. PubMed is a database of scientific studies (medical and other) that the United States National Library of Medicine (NLM) at the National Institutes of Health (NIH) maintains and operates. Publications and journals listed in that database meet important scientific criteria regarding research quality. The Carman study was published in the Journal of Organic Systems, which is not even recognized under PubMed (Mark Lynas talks about this on his blog).  While the journal that published the Krueger study, on the other hand, operates under the umbrella of OMICS publishing group based out of India.  The validity of the peer review process used by OMICS family of journals – since it was established in 2008 – has been questioned by many academics worldwide as well as the US government.  The NIH no longer accepts OMICS publications for listing in PubMed.

These are all really important ‘red flags’ when we try to assess the validity of scientific studies.  If these studies represented anything ground-breaking – something that legitimately challenged the ‘scientific consensus that exists out there – they would have been snapped up by higher calibre PubMed journals such as Science or Nature. Plain and simple.

fail

If this is where we hold our expectations of science – like the quality of work produced in studies conducted by the Séralinis, Carmans and Kruegers of the world – then we are in serious trouble.  I want fact and evidence-based information and ‘good’ science to inform policy – not someone’s agenda-motivated, fictionalized version of the science. If safety and value-add is the goal for our foodstuffs then, as a society, we should demand better than what Séralini, Carman and Kruger have to offer.

We cannot hold progressive and innovative science to such weak standards.

– – –

Related posts:

From ‘I Smell a Rat’ to ‘When Pigs Fly’ – bad science makes it rounds

bias + misrepresentation = politically motivated propaganda

Outstanding Summary of the Seralini Study by J. Byrne

Other things of interest: Myles Power on the Pig Study (Carman etal).

An Accidental Tourist in Ag Biotech? (1990-1994)

I am an academic. A public sector social scientist. I have worked in agriculture and biotechnology for more than two decades. For the past 10+ years, I have researched and written about the social, legal, ethical and political aspects of biotechnology and genomics research.  Every day I field questions, answer emails, and engage in online dialogues about the science of genetic engineering as it is applied to agriculture.  It can be a politically and emotionally charged environment, but I do my best to be accurate, accountable and authentic. I love my work.  But I didn’t (always) aspire to work in and with science.  It’s been a long and interesting journey, so I am going to break it down into consumable bits. Here is Part I:

My foray into this science-based world was completely unexpected. It was a whole lot of serendipity combined with (eventually) some key strategic planning. So if you think that I was one of those brilliant geek-types that went directly from high school biology into a science degree program and then onto graduate studies, you would be wrong.

I spent my formative years in Nipawn, a small prairie town in Saskatchewan. You know the kind: where you can’t ‘swing a cat’ without hitting a farmer and where 2/3 of the desks at school were empty during seeding and harvest? It was a great town to grow up in. I graduated from high school in 1983 and entered the College of Arts and Science at the University of Saskatchewan (U of S) in Saskatoon, Canada, on a *tiny* entrance scholarship.  I promptly dropped out six weeks later. Let’s just say that my early adult years were not my most productive ones. From there on, I awkwardly stumbled through an assembly line of jobs – some quirky, others entirely uninspiring (retail, commercial and personal insurance, banking, modeling (yes, I did say modeling), and acting (yes, I did say acting)). Despite this series of erratic segues on and off the career-building map, my interests from an early age were pretty clear: I liked political sciences, loved the arts and imagined myself to one day be a great writer (note: no science).  Eclectic, I admit. But in my head, it made sense.

Tanya, me and Hayden

Tanya, me and Hayden

They say that necessity is the motherhood of invention. By 1990 (and without going into the sordid details), I found myself on my own (scared) and a single parent. I knew that had to re-invent myself.  I had to secure gainful, stable employment and let’s face it – the kids had to be fed. I qualified for a government-sponsored educational program for low-income single parents where I took both office administration and bookkeeping courses. I then built upon those skills and took some graphic arts courses (tapping into some of my ‘arts’ interests) and began to do freelance work in Saskatoon.  I created signs and logos as well as posters and other promotional materials for fashion and other retail businesses as well as some not-for-profit organizations. I illustrated a couple of books and helped design some teaching materials for parenting manuals. Needless to say, it was hard to make ends meet. So, to keep the wolves at bay, I took on some part-time work with my uncle.

Uncle “C” had (for all intents and purposes) an ‘organic’ garden (this was long before organic standards had been introduced in Canada). I helped Uncle “C” to harvest those vegetables and even helped him sell them at the Saskatoon Farmers’ Market.  It just so happened that Uncle “C” was also developing a U-Pick fruit and berry orchard on a property located south west of Saskatoon (near where Moon Lake Golf presently sits).

At the time, the company that sold high quality fruit seedlings was Prairie Plant Systems Inc (PPS) in Saskatoon.  This is where my uncle sourced the trees for his orchard.  These cultivars were cloned via tissue culture biotechnology and were early-maturing, higher yielding with better tasting, bigger fruit.  Uncle “C” carved out 2+ acres of land (a corner bit outside of a crop irrigation circle on his land) to accommodate these new trees.  I was there to help prepare the ground, haul the wee trees and plant them in an effort to get that fledgling orchard started.  I was also fortunate enough to meet Brent Zettl (president and CEO of PPS) who just happened to be looking for administrative help. He offered me a job.

Prairie Plant Systems Inc. – at the time – was a very small company. It was started in 1988 by two young entrepreneurs (one of them was Zettl), both of whom admitted to being ‘wet behind the ears’ (undergraduates in the College of Agriculture at the University of Saskatchewan) and entirely unapologetic that they had started the tissue culture business as a basement operation.

LF Krisjanson Biotech Complex (credit: U of S Archives)

LF Krisjanson Biotech Complex (credit: U of S Archives)

By the time, I joined PPS, the company and its employees had office, lab and greenhouse space in the LF Kristjanson Biotechnology Complex at Innovation Place, Saskatoon. When you work for a small company, you wear many hats.  My primary role at PPS was as office administrator.  I helped develop much of the marketing materials for all the product lines. But I also helped with the books, helped write funding proposals, did payroll and GST, I worked in the greenhouse and in the field.

Flin Flon, MB. (credit: Wikipedia)

Flin Flon, MB. (credit: Wikipedia)

Together with Golder Associates, we negotiated a contract with Cameco to test several woody and grass species’ success rates for survival under different habitat conditions at Key Lake Mines. So I spent a few days during the year in North Central Saskatchewan helping to source indigenous plant material so that we could take it back to the lab, propagate it and re-plant it to designated sites, monitor the growth and collect data.* PPS also had arrangements with Hudson Bay Mining and Smelting Company (HBMS) in Flin Flon, Manitoba, where we had several different plants growing in a copper/zinc mine drift 1000+ feet below the surface of the earth (very film noire)! We grew roses, fruit trees, and peace lilies which were part of our product offerings to our customers as well as fresh herbs which we harvested bi-weekly and sold to local restaurants in Saskatoon.

Brent Zettle prunes roses in underground growth chamber (credit: PPS)

Brent Zettl prunes roses in underground growth chamber (circa early 1990s) (credit: PPS)

And…we even grew a few Pacific Yew Trees (Taxus berevifolia). This endeavour was part of a small contract we had with a west coast pharmaceutical company. An important cancer fighting component found in the bark and needles of the Pacific Yew tree is Taxol and it is used in the treatment of ovarian cancer.  The problem at the time, however, was one of supply.  It takes 30 or more years for these unique trees to reach maturity in the wild.  And we were experiencing tripled growth rates of almost everything we grew in the controlled environment of the mine drift.  So, it just made sense to see what kind of effect the environment in the underground growth chamber would have on the development of those trees.

This was the company’s first foray into pharma.  But it certainly wouldn’t be its last.  PPS – and its CEO, Brent Zettl – has since moved onto other things ‘medicinal.’ By 2001, the company secured a $5.7 million cultivation contract to produce medicinal marijuana for distribution to the public as part of the Canadian government’s Marijuana Medical Access Regulations (MMAR) program.  PPS and HBMS collaboratively worked together on this.

A few years ago, I invited Brent to address a group a 4th year business students about the evolution of Prairie Plant Systems Inc. in a Biotechnology and Public Policy course I was teaching at the Edwards School of Business at the U of S. What had transpired for PPS in the span of only a decade was mind boggling.  By 2003/04, they had established collaborative ventures with another two mining companies in North America to establish more underground growing operations (names undisclosed due to the sensitive nature of the market and the work).  Think about it… can you name a more secure, controlled place to grow medicinal marijuana than a mine drift? PPS has been the sole provider of pharmaceutical-grade marijuana to Health Canada for the past 13 years.  The company was just awarded the first two licenses to produce medical marijuana under Health Canada’s new Marijuana for Medical Purposes Regulations.

Prairie Plant Systems Inc.

Prairie Plant Systems Inc.

I left PPS in 1994 (more ag adventures outlined in the next blog post).  I was with the company during the formative years when, as is the way of small business, it struggled the most.  It was a time when you wish you didn’t know what you knew – a time when meeting payroll and other financial obligations were challenging, to say the least.  PPS has survived. In fact, despite a few cannibus-production-quality-low-points, it has thrived.

…And I guess I have, too.

– – –

*Johannesen, D., L. Haji and B. Zettl. (1995) “Progressive Reclamation Work at Cameco-Uranerz Key Lake Operations (1978 – 1995). In Henry T. Epp’s Ecological Reclamation in Canada at Century’s Turn.  Pages 89-103.

From ‘I smell a rat’ to ‘when pigs fly’, bad science makes its rounds

pigs flyFrom ‘I smell a rat‘ to ‘when pigs fly’, bad science has been making the rounds of late. The multi-authored article A long-term toxicology study on pigs fed a combined genetically modified (GM) soy and GM maize diet” reports that pigs fed a diet of only genetically modified grain show a markedly higher incidence of stomach inflammation than pigs that ate conventional feed.

This paper is fresh off the press and ready for ravenous consumption by anti-GMO enthusiasts. However, it seems that – post-publication – the paper and its evidence fail the independent peer-review process on many fronts:

The Evidence: David Tribe reviews the paper here: He says, “It’s what some call a fishing expedition in search of a finding, and a known pitfall of animal feeding trials on whole foods…” Tribe points out (among other things) that some of the study’s observations might be attributed to compositional differences in the variety of soybeans or corn fed to the pigs “..there is relatively little information in the paper about nutritional formulation, methods used for producing the pig diets, storage time for the grain and which particular varieties of grain were used in the diets.”

Update – June 14th – – – Anastasia Bodnar expands upon this further in her post in Biofortified Lack of care when choosing grains invalidates pig feeding study: “The authors aimed to do a real world study, with pig feed that can be found in real life. It intuitively seems right to just go get some grain from some farms. After all, that is what pigs eat, right? Unfortunately, it’s just not that simple…To hone in on any differences that may be caused by the GM traits, they would have to use feed with one or more GM traits and feed that doesn’t have the GM traits but that is otherwise as similar as possible. If the feeds aren’t very similar, then we can’t know if any differences in the animals is due to the GM traits or due to something else.”

Update June 14th – – – Dr. Robert Friendship (via Terry Daynard) – swine expert from the University of Guelph – points to methodological problems with “visual scoring” and assessment of ‘inflammation’: “…it was incorrect for the researchers to conclude that one group had more stomach inflammation than the other group because the researchers did not examine stomach inflammation. They did a visual scoring of the colour of the lining of the stomach of pigs at the abattoir and misinterpreted redness to indicate evidence of inflammation. It does not. They would have had to take a tissue sample and prepare histological slides and examine these samples for evidence of inflammatory response such as white blood cell infiltration and other changes to determine if there was inflammation.”

Andrew Kniss clearly demonstrates the failings of the statistical analysis, poking holes in the study’s evidence. He states, “If I were to have analyzed these data, using the statistical techniques that I was taught were appropriate for the type of data, I would have concluded there was no statistical difference in stomach inflammation between the pigs fed the two different diets. To analyze these data the way the authors did makes it seem like they’re trying to find a difference, where none really exist.”

Another matter worth mentioning: in the experiment, half of the pigs died of pneumonia. [update: 50% of the pigs did NOT die but, rather, were ‘sick’ with pneumonia – my error] This is an indication of bad stewardship. In events such as this, it is only appropriate to throw away the results – maybe a ‘do-over’ (next time using a better methodological approach (and take better care of the pigs)).

Credibility: This was the first time I had ever heard of The Journal of Organic Systems. As Mark Lynas observes (in GMO pigs study: more junk science), “The journal does not appear in PubMed, suggesting it is not taken very seriously in the scientific community.” In the world of science, publishing a good, sound piece of science in a good journal is an indicator of quality and credibility. I mean, think about it… if this study was a ground-breaking piece of ‘all that,’ wouldn’t it have been published by Nature or Science? At the very least, the paper would have been picked up by a journal within the study’s subject area.

Bias: You only need glance at the acknowledgement list at the end of the paper to see that it is a ‘who’s who’ of the anti-GMO world.  This kind of makes the statement “The authors declare that there are no conflicts of interest” pretty much ‘moot.’  One author – Howard Vlieger – is the President of Verity Farms, Iowa, an organization that markets itself as non-GM.  Judy Carman (lead author) is widely known as a long-time anti-biotech campaigner. She even has a website called ‘GMOJudyCarman‘ (launched in late May – timely, no?)

Other interesting bits? In an April 2008 interview, Dr. Carman stated that her work received funding from Jeffrey Smith and the Institute for Responsible Technology. Jon Fagan, listed in the acknowledgements, is the head of Genetic-ID. Genetic-ID is the company that conducted the DNA analysis for the study confirming that the GM corn used contained a combination of NK603, MON863 and MON810 genes (page 40). Genetic-ID is based in Fairfield, Iowa and has satellites the world over. Genetic-ID is a GMO testing company and part of a convoluted network of actors with vested anti-GM interests, weird politics and Vedic-scienc-y stuff, and a long list of celebrities (see here).

It would seem that Carman et al have taken some pages from Seralini’s ‘playbook’ – but there are no ‘silver linings’ here.  This is just another exercise to “prove” that GMOs are dangerous rather than to objectively investigate them. Given the conflict of interests of the authors and affiliates involved, what other conclusion could they come to? The science, however, doesn’t pass the sniff-test. It’s a case of faulty methodology and poorly interpreted data magically making it through the peer review process.  Throw in some colorful (scary) pictures of pig uteri for good measure, add to that a bit of bias and credibility issues and you have the makings for some really ‘shoddy science’.

– – –

  • Check out Fourat Janabi’s post @Fouratj: “Pigs, GMOs and Bullshit Fourat provides a point by point critique of the Carman et al article – Easy-to-consume with none of the BS. :O)
  • Then there is this post from Julee @sleuth4health who quips, “At this point, anybody who’s ever judged a High School Science Fair has got to be thinking “F.”” 
  • Catalyzing Illinois writes Something Smells and its not the Pigs“We are not dealing with “disinterested and objective science” here.”
  • Contrary to Popular Belief: Latest anti-GMO study: more bullshit

GM-resistant corn rootworm: getting the facts straight

guest blog

by Robert Wager

The segment GM-Resistant Rootworms and the Future of Farming was aired on May 29th on CBC’s The Current. The program reviewed a particular type of genetically modified crop – Bt corn – and how it has performed over time. The program had several guest speakers with differing points of view.  It was an interesting program overall, but there were a few keys facts missing:

  1. GM-resistant corn rootworms have been found in less than 1% of US corn fields so the context/scale of the problem was not made clear on the program (for more on this see the Biopesticides and Pollution Prevention Division (BPPD) IRM team’s review of Monsanto’s Cry3Bb1 resistance monitoring data (EPA-HQ-OPP-2011-0922-0037) (2010), Table 2).
  2. Integrated pest management (IPM) can include organic production methods if they are deemed best for a given farming situation. The suggestion that IPM is separate from organic farming is simply not true.
  3. The suggestion that only organic farming practices enhance soil ecology is blatantly false.  The National Academy of Science 2010 report, Impact of GE crops on farm Sustainability in the US stated farmers who have adopted GE crop technology have seen “substantial economic and environmental benefits.”  The organic farmer spokesperson on the program ignores this fact.  A good example is the well documented soil enhancements that are made possible with reduced/no tillage farming that Roundup Ready crops permit.  Tilling for weeds (the organic option) is quite destructive to soil structure.
  4. Organic agriculture is not chemical free. They use a different set of chemicals (coppers, sulfates). The environmental impact quotient (EIQ) for some of the organic alternatives is far higher (more negative impact on the environment) than conventional or biotechnology counterparts.
  5. The significant yield drag for organic agriculture is not mentioned by the organic production advocate.  On average decades of research show a 15-30% yield reduction for organic crop production (see Alex Avery’s book The Truth About Organic Foods (2006)).  This would have a very significant impact on food prices and farmer incomes.
  6. There was no mention that organic agriculture use the same Bt that was the main topic of the show. Organic crop advocates often vilify Bt in GM crops and then use the very same Bt in their own agricultural practices.  Where was that fact in the discussion?
rootworm damage NDSU

Source: North Dakota State U http://www.ag.ndsu.edu/

Having outlined a few shortcomings of the show’s content, I would like to congratulate the panel on the The Current’s program for shedding light on the need for better IPM practices in farming.  No one system of agriculture will solve all of the problems inherent in food production.  The world will need to double food production by 2050 and for that we require many systems of agricultural production in order to address the challenge.

Robert Wager
Vancouver Island University
Nanaimo BC
robert.wager@viu.ca

—–

rob wager 1

Robert Wager has been a faculty member of the Biology Dept at Vancouver Island University for the past 18 years.  He has a BSc. in Microbiology and a Masters in Biochemistry and Molecular Biology.  Rob has been interested in Genetically Modified (GM) crops and food with emphasis on public education and public policy.  He has written dozens of mainstream articles for the general public that help explain different aspects of the technology.  You can follow Rob on Twitter @RobetWager1 or review his work at: http://web.viu.ca/wager

“10 ‘reasoned’ responses” to “10 reasons we don’t need #GMOs”

You may have run across this article “10 Reasons We Don’t Need GM Foods” on the FoodConsumer website.  It’s been making its rounds on social media (Facebook and Twitter). I would like to address some of the inaccuracies in this article – point by point:

1. GM foods won’t solve the food crisis

Well, surprisingly enough, I agree with this one.  Or at least with the statement: GM foods ALONE won’t solve the food crisis. GM foods and genetically engineered (GE) crops aren’t a silver bullet in resolving problems with food security.  I refer to Mark Lynas (former Greenpeace activist and author) who said in a recent talk he gave at Cornell University:

“[GE/GM] cannot build better roads or chase away corrupt officials. But surely seeds which deliver higher levels of nutrition, which protect the resulting plant against pests without the need for expensive chemical inputs, and which have greater yield resilience in drought years are least worth a try?” Mark Lynas (April 2013)

Hey, I’d say so.  It is important to note that the introduction of GE crops (in particular) has enabled wider adoption of “no-till” farming (see a farmer’s perspective on this).  No-till is a system which conserves soil moisture, prevents erosion, dramatically reduces nutrient and pesticide movement to streams and rivers, and reduces fuel use.  All good, in my opinion.

Did you know that if we still farmed using the inputs and techniques that we did in the 1950s, we would need millions (maybe even billions) more hectares available to produce what we produce today? Advances in plant breeding techniques, introduction of no-till practices, integrated pest management and adoption of genetically engineered crop varieties account for this rise in production.  This translates into higher productivity on less land.  We all win.   

2. GM crops do not increase yield potential

Seriously?! Hmmm.  Well, research suggests differently. The results of meta-analysis (that means a study that analyzed the results from MANY MANY other studies) published in a peer reviewed science journal in 2012 found that organic yields of individual crops were on average 25% percent lower than that of conventional yields.   Productivity in GM crops are purported to be anywhere from 7 – 20% higher than conventional varieties.  And, of course, context matters.  Different soil conditions in different parts of the world may be more or less conducive to a variety of production methods. Again, GE technology and GM crops are not a silver bullet by any means. But genetically engineered crops are an important technology in the food production toolbox. So, let’s not throw the baby out with the bathwater, OK?

3. GM crops increase pesticide use

If that’s the case, then how do you explain this interesting fact? Cotton farmers in India spray heavily to control for pests that damage production. Did you know that the application of pesticides to cotton in India is done by hand? With farmers walking through their small cotton fields using backpack sprayers? The adoption of GM cotton in India has reduced the number of pesticide applications per season by 50%. It is estimated that more than 2 million fewer cases of pesticide poisoning are occurring on an annual basis which saves the Indian government US$14 million (Smyth 2013, Herring 2009).

Want a first world perspective on the whole GM and pesticide use issue? Check out Applied Mythology‘s “The Muddled Debate on Pesticides and GM Crops.” Pesticide use is lower. Combine that with other economic and environmental benefits (refer to #1 and #2)… it’s a good thing.

4. There are better ways to feed the world

Let’s re-phrase this so that it’s a bit more accurate: “There are “many” ways to feed the world”

Absolutely.  A million of them.  Food security is a complex problem that requires a multi-faceted approach in resolving the political and economic issues that come with feeding a growing world population.  Again, GE and GM crops are very important technologies in the food production toolbox…

I mentioned the “baby” and the “bathwater” already, didn’t I?

5. Other farm technologies are more successful

Farming is complex. I don’t know ANY farmer who is not up against making a hundred decisions in a given day.  Just ask a producer (grain, livestock, organic, conventional): Ryan Goodman, Brian Scott, Emily Zweber, Carrie Mess… Again, this is not an all or nothing scenario. Many factors go into the strategic management at the farm level.  And its never as simple as saying that GMO is ‘bad’ and organic is ‘good’ or vice versa. It’s more than just picking a production method.

6. GM foods have not been shown to be safe to eat

I hear this a lot and I have to remind everyone that nothing is 100% safe. Nothing. NO food. You can test organic, conventional and GM for the next 500 years and there will never ever be “absolute proof” that a food produced a certain way is 100% safe. That’s not how things roll here in the ‘real world’. The food value chain is long and involves lots of actors.  Lots can happen. Take for example the Maple Leaf Foods listeria crisis in 2008 (23 confirmed deaths). Then there was the XL Foods e.coli incident in 2012 where 18+ people were taken ill when they ingested tainted meat. And the anti-GM folks get a bit hot under the collar when I mention this one:  almost 4000 people were affected and 53 died from a rare strain of e.coli in sprouts that were produced on an organic farm in Germany in 2011.

There have been some food-related tragedies.  But there is no documented evidence of harm to human health or deaths from consumption of GM foods since they were introduced to the market two decades ago. None. Here are TWO studies (US and EU – and there are more) that attest to the safety of GM foods (NRC 2004, EC 2010, more here (scroll down)). GE crops or GMOs have been the most heavily tested food products in the history of our regulatory system.

7. People don’t want GM foods – so they’re hidden in animal feed

I wonder who thought this little gem up.  GM foods aren’t “hidden.” And they are certainly not “hidden” in animal feed.  Livestock producers use corn and soybean as a base for animal feed, all over the world (including the the European Union where GE soybeans are exported from the US and Brazil for animal consumption). As of 2012, there has been a 100-fold increase in the planting of biotech crops since 1996.  In the US alone, between 67% and 94% of all acreage attributed to corn, soybean, cotton and canola are genetically engineered. Nothing is “hidden” here… genetically engineered crops are ‘front and centre’ in world agriculture production.  Biotechnology is the fastest adopted crop technology in the history of modern agriculture (James 2012).

8. GM crops are a long-term economic disaster for farmers

Wow. That sounds scary.  Yes, GM seed prices are higher than that of conventional seeds.  But farmers that utilize the technology do so because they get higher yields and extract higher margins.  Just ask Brian Scott: “I can get a premium price for the soybeans we grow to be used as seed by other farmers next year.” If you ask Brian, he is neither “dependent” on the technology nor is he a “slave to ‘big ag'”.   Rather he (and other producers like him) are making economic decisions at the farm level based on input costs and projected market outcomes.  And don’t kid yourself. These folks don’t make these decisions at the expense of the land.  They *care* about the environment (environmental benefits: see #1).  They are not about to willfully destroy land that has been farmed by them and their ancestors – and potentially their children and children’s children – for generations.

9. GM and non-GM cannot co-exist

There’s that word again – – – “contamination”.  It’s an ugly word with ugly connotations.  Did you know that we already operate in a segregated agriculture and food system?  If you want, you can choose to eat organic.  It’s all labeled in your grocery store.  Organics standards were adopted by the Canadian Food Inspection Agency in 2009 in Canada.  These standards are enforced by organic inspectors through accredited certification bodies all over the country. Contamination? Organic farm and crop certification is based on the production methods used, NOT on the purity of the end product. So, nothing would happen to an organic grower or his produce if (in the highly unlikely event that) trace amounts of some other variety were found (BTW – there is no testing in organic crops). Organic growers will never lose their organic certification (unless, of course, they are shown to be intentionally growing ‘non-organic’ produce or crops and sending them to market as ‘organic’).

10. We can’t trust GM companies

Don’t believe everything you read. Syngenta, Dow, Bayer, Monsanto and other ‘big ag’ companies are just that – companies. They are profit-motivated and generate revenues to cover the costs of doing business and to provide a return for their shareholders. These companies, and others like Apple or MicroSoft, make no secret of that. And isn’t that the tenet of any business – big or small? Companies step into the space where the public sector can’t and won’t – they bring the products downstream to the market. Did you know that the time that it takes to put a product through the regulatory system has almost tripled in the last 20 years (13 years and $140 million US)? And just to clarify, the regulatory system is no more robust than it ever was. But the political pressures that have been placed on governments by interest groups have forced a ‘slow down’ in the regulatory process. This means more costs. And, right now the only companies that have the resources to navigate the costly and complex regulatory processes are big ag.

The whole “David and Goliath” thing (small defenseless farmer vs big ag company) gets wayyyy overblown in the anti-GM rhetoric.  Like I said before, don’t believe everything you read.  Like ’em or not, ‘big ag’ companies are the only ones that can take these technologies to the marketplace where society can extract value from them.  Who else? Universities and public research institutes? I don’t think so.  At least, that’s not where I want *my* tax dollar going. These multinational ag businesses invest the dollars in the research and product development and they have a right to protect that investment for a limited period of time. It’s how our patent system works – for EVERYONE.

Want to know more about patents and plants? Check here.

– – – –

We live in a privileged world; one where food is plentiful and varied and one that affords us this seemingly ‘aesthetic’ relationship with what and how we consume. We have turned our backs on the functionality of food and entered into this realm of ‘food snobbery’ where the ‘food police or elites‘ (as Jayson Lusk refers to them) seem to rule the world.

On a final note: For every 10 reasons cited suggesting that we don’t need GMOs, I can list 100 or more of why we *do* need genetically engineered crops and GM food.

rant/off

Scientific evidence and policy making

Evidence based information to inform policy

In November of 2012, I organized a PANEL at the Canadian Science Policy Conference in Calgary.  We invited experts from Canada, the US and the UK (all with experience navigating the murky waters between science and government) to participate on the panel to discuss the issue:

If non-science factors drive some of the issues, how, if and when is scientific knowledge and expertise accessed to inform evidence-based policy making?

Well, first off, it appears that Canada may be coming up short. This country is a bubbling kettle of political hot water right now. Some argue that the gap between science and government is widening.  There are allegations that the federal government is ‘muzzling its science’. A ‘Death of Evidence’ movement even arose out of the AAAS meeting in Vancouver in 2012.

The relationship between science and government in Canada

It is important to emphasize that Canada has used some models to navigate the space between science and government.  And these models have worked well to varying degrees. Many were modeled after initiatives in the UK.  The problem is that they have long been abandoned.  Canada currently has something called the Science Technology Innovation Council (STIC) which reports to the Junior Minister of Science.  But, apparently, the advice and information that the organization offers up is ‘secret.’

But ‘secret’ just doesn’t ‘cut it’. The Jenkins Report (Innovation Canada: A Call to Action, 2011) states that while Canada excels in research it lags behind much of the rest of the developed world in commercializing innovation. One of the contributing factors that the Report alludes to is the lack of a broad, transparent connection between science and government.

innovation deficit

So, what came out of the CSPC 2012 panel discussion?

1) There are gaps:

  • Decision makers need the best, most reliable and timely scientific advice and information (evidence) in order to formulate sound policy
  • Sources of evidence need to be unbiased and independent
  • And scientific literacy in the public must be addressed in some way (to mitigate some of the myths and misinformation that circulates)

2) Good governance required:

  • There appears to be an inherent lack of understanding of cultural gaps between scientific and political spheres – that’s a problem.
  • This leads to questions around the Who? What? How? When? of mobilizing the evidence. It is important to clarify relationships and roles in terms of information exchange.
  • What models should we use? Frameworks?

Which leads one to ask…

Mobilizing Evidence: what has been done to date?

From the Asilomar Conference on Recombinant DNA (1975) to present day, there have been a number of models for knowledge/expertise that have been initiated. The extension model is an old but successful model with a reported good return on investment with these kinds of initiatives working well in agricultural based colleges.  They quite often effectively connect researchers and plant breeders to producers. But the problem today is that we are not only dealing with ‘farmer knowledge needs’ here – – – the stakeholder circle has broadened a great deal and this makes things much more complex.

There have been (and are) a number of national and international efforts to summarize, assess and communicate evidence: International Food Safety Network (iFSN), Royal Society of Canada, Canadian Biotechnology Advisory Committee (CBAC), Nuffield Council on Bioethics, US National Research Council, Pew Initiative on Food and Biotechnology, Biosafety Clearing House (BCH) – Cartagena Protocol on Biosafety.  Some initiatives are great at compiling knowledge but not as great at interpreting that knowledge, let alone ensuring that the information gets where it needs to go. Others – like those governed by FAO, WHO and the OECD – although good, can be very slowwwww and ponderous.

There are great examples of formal science-government programs currently in place; ones that are designed to actually push the evidence along to where it needs to be.  Programs in the US such as the AAAS Science and Technology Policy Fellowships and the Jefferson Science Fellowships appear to be working quite well.  In the UK the government has positions called Chief Scientific Advisors that work to provide evidence to ministers that helps them make reasonable decisions on the basis of real evidence.

All of these are good examples where, at worst, knowledge is gathered and synthesized and where, at best, ‘evidence’ is mobilized into realms where key social and economic decisions are made.  

What models can and should we adapt and use in Canada? Can we do more? Can we do better? – – – – Related posts: Digging into the ‘Death of Evidence’