GM-resistant corn rootworm: getting the facts straight

guest blog

by Robert Wager

The segment GM-Resistant Rootworms and the Future of Farming was aired on May 29th on CBC’s The Current. The program reviewed a particular type of genetically modified crop – Bt corn – and how it has performed over time. The program had several guest speakers with differing points of view.  It was an interesting program overall, but there were a few keys facts missing:

  1. GM-resistant corn rootworms have been found in less than 1% of US corn fields so the context/scale of the problem was not made clear on the program (for more on this see the Biopesticides and Pollution Prevention Division (BPPD) IRM team’s review of Monsanto’s Cry3Bb1 resistance monitoring data (EPA-HQ-OPP-2011-0922-0037) (2010), Table 2).
  2. Integrated pest management (IPM) can include organic production methods if they are deemed best for a given farming situation. The suggestion that IPM is separate from organic farming is simply not true.
  3. The suggestion that only organic farming practices enhance soil ecology is blatantly false.  The National Academy of Science 2010 report, Impact of GE crops on farm Sustainability in the US stated farmers who have adopted GE crop technology have seen “substantial economic and environmental benefits.”  The organic farmer spokesperson on the program ignores this fact.  A good example is the well documented soil enhancements that are made possible with reduced/no tillage farming that Roundup Ready crops permit.  Tilling for weeds (the organic option) is quite destructive to soil structure.
  4. Organic agriculture is not chemical free. They use a different set of chemicals (coppers, sulfates). The environmental impact quotient (EIQ) for some of the organic alternatives is far higher (more negative impact on the environment) than conventional or biotechnology counterparts.
  5. The significant yield drag for organic agriculture is not mentioned by the organic production advocate.  On average decades of research show a 15-30% yield reduction for organic crop production (see Alex Avery’s book The Truth About Organic Foods (2006)).  This would have a very significant impact on food prices and farmer incomes.
  6. There was no mention that organic agriculture use the same Bt that was the main topic of the show. Organic crop advocates often vilify Bt in GM crops and then use the very same Bt in their own agricultural practices.  Where was that fact in the discussion?
rootworm damage NDSU

Source: North Dakota State U http://www.ag.ndsu.edu/

Having outlined a few shortcomings of the show’s content, I would like to congratulate the panel on the The Current’s program for shedding light on the need for better IPM practices in farming.  No one system of agriculture will solve all of the problems inherent in food production.  The world will need to double food production by 2050 and for that we require many systems of agricultural production in order to address the challenge.

Robert Wager
Vancouver Island University
Nanaimo BC
robert.wager@viu.ca

—–

rob wager 1

Robert Wager has been a faculty member of the Biology Dept at Vancouver Island University for the past 18 years.  He has a BSc. in Microbiology and a Masters in Biochemistry and Molecular Biology.  Rob has been interested in Genetically Modified (GM) crops and food with emphasis on public education and public policy.  He has written dozens of mainstream articles for the general public that help explain different aspects of the technology.  You can follow Rob on Twitter @RobetWager1 or review his work at: http://web.viu.ca/wager

The Triffid Flax Story: growers’ perspective (plus more)

Over the past couple of years, I have been working with the TUFGEN group (Total Utilization of Flax Genomics) at the University of Saskatchewan.  As the social scientist on the team, I was tasked with (among other things) exploring the Triffid issue that came up in 2009. So, I joined forces with the Saskatchewan Flax Development Commission and together we hosted a focus group, administered a flax grower survey and conducted one-on-one interviews with industry stakeholders.  We were able to, in almost real-time, document the Triffid issue from 2009 up until present. Our findings have been published in an article in the AgBioForum journal. A background to the story and a summary of our findings are outlined below.

Background: Triffid flax was developed in the late 1980s at the Crop Development Centre at the University of Saskatchewan and was designed to thrive in soil containing residues from sulfonylurea-type herbices (good weed control option).  It received both feed and food regulatory approval in Canada and the US by the late 1990s.  However, negative consumer response to genetic modified crops in the EU (major flax export market) forced the Canadian flax industry to make a tough decision.  Triffid was voluntarily removed from the market. In fact, it was never even commercially grown.  Done deal, right? Nope. In 2009, Triffid flax was discovered in baking products in the EU food chain.  As you can imagine, this threw the Canadian industry into a whirlwind… “A winter of discontent turned into the perfect storm of all that can go wrong…”

Findings:

1. Wide spread low-level presence of Triffid flax across the Canadian growing belt is likely multifaceted and due to a) persistence of the variety (in fields where growers did not rotate for three years and in seed mixing/movement by equipment) and in the b) dispersal of the variety (flax seed ‘sticks’ when wet or dry).

2. Exports of flax into the EU food market (Canada’s major export market for flax) has NOT resumed but Canada is meeting exports there for industrial use.  Russia and the Ukraine have stepped up production and are filling the gaps in the EU food market.

3. Although prices have recovered to some degree and a certain amount of complacency has settled in, the Triffid situation has left some flax growers very frustrated. Particularly with the costs associated with ongoing testing (which continues according to the agreement between Canada and the EU).

4. Costs to the Canadian industry, although difficult to estimate, total CDN $30 Million. This includes demurrage, testing, segregation and other costs. The EU industry sustained ~ CDN $50 million.

This story is documented (yes, ‘academically’ in journal format – but not too difficult of a read) in pdf format here (Ryan and Smyth Triffid 2012).  A link to the article in the online journal AgBioForum (“Economic Implications of Low-level Presence in a Zero-Tolerance European Import Market: The Case of Canadian Triffid Flax” Ryan and Smyth) is here: http://www.agbioforum.org/v15n1/v15n1a03-ryan.htm. We worked with the Saskatchewan Flax Development Commission and with the other industry organizations to pull this story together.  A huge component of our work revolved around a ‘farmer survey’. The article includes very passionate quotes from Canadian farmers.

I would love to hear your comments! This represents an interesting turn in Canada’s agricultural history.  I was happy to be part of the team effort to get this story out!

Slide presentation on this work available on the SaskFlax website: http://www.saskflax.com/PDFs/2012/10_2012_CamiRyan.pdf

– – – –

We (Stuart Smyth and I) are grateful for the support of The Saskatchewan Flax Development Commission, Flax Council of Canada, our colleagues at TUFGEN and in the Department of Bioresource Policy, Business and Economics at the U of S and the Canadian Agricultural Adaption Program (CAAP) and Agricultural Council of Saskatchewan, Inc. for funding.

Organic food not safer than conventional

January 7, 2012

Hey all! 

Check out Rob Wager’s and my opinion piece that was published in the Western Producer this week.  

“We cannot continue to assume that organic is the more superior food choice or agricultural practice. The process of bringing food from the farm to the fork is more complex than that.”

Untitled

http://www.producer.com/2012/01/organic-food-not-safer-than-conventional/

Swiss consumers & choice…study with organic, conventional, GMO food

November 15, 2011

Here is a peer reviewed journal article in Food Policy (August 2011) outlining the results of a study exploring consumer choice about productsproduced through different ag production methods.

 How would Swiss consumers decide if they had freedom of choice? Evidence from a field study with organic, conventional and GM corn bread

Authors: Philipp Aerni, Joachim Scholderer, David Ermen

EXCERPT: “The results of the discrete choice analysis revealed that customers are price sensitive, but not to the extent expected. 20.1% of the customers bought a GM corn bread even if it was as expensive as its organic alternative. The analysis of the questionnaire results confirmed that ‘curiosity’ rather than the price was the primary reason for buying a GM corn bread. Another reason may also be related to lifestyle conflicts in front of the market stand. On the one hand, people express a clear preference for organic and are willing to pay a premium for it, on the other hand they welcome personal initiative by local people to sell something new at open market stands – even if this new thing is a GM corn bread.”

ABSTRACT: In 2005, the Swiss expressed their negative attitude towards genetic engineering in agriculture by voting in favor of a ban to use genetically modified (GM) crops in domestic agriculture. At the same time, certain GM food products remain approved but are not on offer since retailers assume that consumers would shun labeled GM food. In our study we tested this claim by conducting a large-scale field study with Swiss consumers. In our experimental design, three clearly labeled types of corn bread were offered at five different market stands across the French and German-speaking part of Switzerland: one made with organic, one made with conventional, and one made with genetically modified (GM) corn. In addition, we tested the consistency between purchasing decision at the market stand and the previous voting decision on GMOs in 2005 by means of an ex-post questionnaire. The results of our discrete choice analysis show that Swiss consumers treat GM foods just like any other type of novel food. We conclude from our findings that consumers tend to appreciate transparency and freedom of choice even if one of the offered product types is labeled as containing a genetically modified ingredient. Retailers should allow consumers to make their own choice and accept the fact that not all people appear to be afraid of GM food.

 

McHughen and Wager address misconceptions around ag biotech

December 9, 2010

Here is a great article to follow up from what transpired on the Dr. Oz  show this week.  Alan McHughen and Robert Wager co-author an article in the December 2010 issue of New Biotechnology entitled “Popular misconceptions: agricultural biotechnology”.  I have attached the article here and I think that the Open Source Gods will shine favourably down on me for that (even if the journal doesn’t).  Without going into detail, the article explains and refutes some of the most popular misconceptions around agricultural biotechnology.

Dr. Pam Ronald was a guest on the Oz episode which covered the issue of GE tech and food earlier this week.  Dr. Ronald did a fantastic job of representing the science of biotechnology but unfortunately she had difficulty competing with the sexy soundbytes of anti-GE sentiments parlayed by “Seeds of Deception” author J. Smith.  If that wasn’t enough, I was frustrated by Dr. Oz’s apparent bias against GE technology and GMO food – and I quote:

“…and this organic cereal contains no genetically modified seeds or products so that is an advantage…”

??!!!

Back to the McHughen/Wager article…. the authors state:

“Popular misconceptions might be considered amusing if they are held only by a small ‘fringe’ group. But sometimes the misinformation and fear can become infectious and pathogenic, instigating bad public policy, with substantial negative consequences to everyone.”

I think that Dr. Oz should have a read, don’t you? (see article attached below)

I refer to some other online sources relating to the Dr. Oz show and Dr. Ronald’s appearance on it:

Dr.Ronald’s follow up to her appearance on the show: http://scienceblogs.com/tomorrowstable/

Want some GOOD, BALANCED information? Here are some sources: bioforitifed,org, ucbiotech.org and academicsreview.org

mchughen_etal_popular_misconceptions_about_ag_biotech.pdf
Download this file

What’s wrong with GM food?

Fussy Eaters – What’s Wrong With GM Food?
– Jonathan Jones. BBC, July 6, 2010

With the world’s food security facing a looming “perfect storm”, GM food crops need to be part of the solution, argues Professor Jonathan Jones. In this week’s Green Room, he wonders why there is such a fuss about biotechnology when it can help deliver a sustainable global food system. (In the US, where many processed foods contain ingredients derived from GM maize or soy, in the most litigious society in history, nobody has sued for a GM health problem)

A billion humans do not have enough to eat. Water resources are limited, energy costs are rising, the cultivatable land is already mostly cultivated, and climate change could hit productive areas hard. We need a sustainable intensification of agriculture to increase production by 50% by 2030 – but how?

Food security requires solutions to many diverse problems. In the US or Europe, improved seeds could increase yields by 10% or more, reduce pesticide use and give “more crop per drop”.

However, improved seeds can only help impoverished African farmers if they also have reliable water supply, roads to take crops to market, and (probably most important) fertiliser. Better farming methods are also part of the solution; these require investment in technology and people. Fortunately, after 25 years of “food complacency”, policymakers are taking the issue seriously again.

I want to reduce the environmental impact of agriculture while maintaining food supply. The best thing we can do is cultivate less land, leaving more for wildlife, but if we are still to produce enough food, yields must go up. There are many contributors to yield; water, fertiliser, farming practice, and choice of seed.

‘Simple method’
We can improve crop variety performance by both plant breeding (which gets better every year with new genetic methods), and by genetic modification (GM).
Ouch; yuck – GM. Did you recoil from those letters? Why? I started making GM plants (petunias, as it happens) in 1983, working at a long defunct agbiotech company in California called Advanced Genetic Sciences.

In the early 80s, we did wonder about – in Rumfeldspeak – “unknown unknowns; the unknowns we didn’t know we didn’t know about”, but 27 years later, nothing alarming has been seen. The method (GM is a method not a thing) is simple.

We take a plant, which typically carries about 30,000 genes, and add a few additional genes that confer insect resistance, or herbicide resistance, or disease resistance, or more efficient water use, or improved human nutrition, or less polluting effluent from animals that eat the grain, or more efficient fertiliser uptake, or increased yield. We could even (heck, why not?) do all of the above to the same plant.

The result is increased yield, decreased agrochemical use and reduced environmental impact of agriculture. In commercial GM, many hundreds of independent introductions of the desired new gene (the “transgene”) are made, each in a different individual plant that is selected and tested. Most lines are discarded. To be commercialised, a line must carry a simple, stable and well-defined gene insertion, and show heritable and effective transgene function, with no deleterious effects on the plant.

Growing demand
GM is the most rapidly adopted, benign, effective new technology for agriculture in my lifetime. Fourteen million farmers grow GM crops on 135 million hectares; these numbers increased by about 10% per year over the past decade, and this rate of growth continues. More than 200,000 tonnes of insecticide have not been applied, thanks to built-in insect resistance in Bt crops; how could anyone think that’s a bad thing?

Bt maize is safer to eat because of lower levels of mycotoxins from fungi that enter the plant’s grains via the holes made by corn-borer feeding; no insects, no holes, no fungal entry, no toxins in our food. There are not enough fish in the sea to provide us all with enough omega 3 fatty acids in our diet, but we can now modify oilseeds to make this nutrient in crops on land.

Protection from rootworm means maize crops capture more water and fertiliser, so less is wasted. Farmers must always control weeds; herbicide tolerant (HT) soy makes this easier, and has enabled replacement of water-polluting persistent herbicides with the more benign and rapidly inactivated glyphosate. HT soy has enabled wider low-till agriculture, reducing CO2 emissions.

And yet in Europe, we seem stuck in a time warp. Worldwide, 135 million hectares of GM crops have been planted; yet in Norfolk, I needed to spend £30,000 of taxpayers’ money to provide security for a field experiment with 192 potato plants, carrying one or another of a disease resistance gene from a wild relative of potato. It boggles the mind. What are people afraid of?

‘Wishful thinking’
Some fear the domination of the seed industry by multinationals, particularly Monsanto.
We need smart, sustainable, sensitive science and technology, and we need to use every tool in our toolbox, including GM Monsanto is certainly the most determined and successful agbiotech company. In their view, they had to be; they bet the company on agbiotech because unlike their rivals (who also sell nylon or agrichemicals) they had nothing else to fall back on.

But monopoly is bad for everyone. Here’s a part solution; deregulate GM. If it costs more than $20m (£13m) to get regulatory approval for one transgene, lots of little GM-based solutions to lots of problems will be too expensive and therefore not deployed, and the public sector and small start-up companies will not make the contribution they could. Never before has such excessive regulation been created in response to (still) purely hypothetical risks.

The cost of this regulation – demanded by green campaigners – has bolstered the monopoly of the multinationals. This is a massive own-goal and has postponed the benefits to the environment and to us all.

Some fear GM food is bad for health. There are no data that support this view. In the US, where many processed foods contain ingredients derived from GM maize or soy, in the most litigious society in history, nobody has sued for a GM health problem.

Some fear GM is bad for the environment. But in agriculture, idealism does not solve problems. Farmers need “least bad” solutions; they do not have the luxury of insisting on utopian solutions.

It is less bad to control weeds with a rapidly inactivated herbicide after the crop germinates, than to apply more persistent chemicals beforehand. It is less bad to have the plant make its own insecticidal protein, than to spray insecticides. It is better to maximise the productivity of arable land via all kinds of sustainable intensification, than to require more land under the plough because of reduced yields.

Some say GM is high risk, but they cannot tell you what the risk is. Some say GM is causing deforestation in Brazil, even though if yields were less, more deforestation would be required to meet Chinese and European demand for animal feed.

Some say we do not need GM blight resistant potatoes to solve the £3.5bn per year problem of potato blight, because blight resistant varieties have been bred. But if these varieties are so wonderful, how come farmers spend £500 per hectare on spraying to protect blight sensitive varieties? The answer is the market demands varieties such as Maris Piper, so we need to make them blight resistant.

I used to be a member of a green campaign group. They still have campaigns I support (sustainable fishing, save the rainforests, fight climate change), but on GM, they are simply wrong.

Even activists of impeccable green credentials, such as Stewart Brand, see the benefits of GM. Wishful thinking will not feed the planet without destroying it. Instead, we need smart, sustainable, sensitive science and technology, and we need to use every tool in our toolbox, including GM.

—-
Professor Jonathan Jones is senior scientist for The Sainsbury Laboratory, based at the John Innes Centre, a research centre in plant and microbial science

Full article and readers comments at http://news.bbc.co.uk/2/hi/science/nature/8789279.stm

EU Wants to Put GMO Dispute to An End

– EurActive, July 2010 12 http://www.euractiv.com

The European Commission will tomorrow (13 July) propose an overhaul of the EU’s policy for approving genetically modified (GM) crops, which will allow countries more freedom to ban cultivation on their territory while retaining an EU-wide authorisation system.

The new policy for GM crop cultivation, to be unveiled tomorrow, aims to draw a line under years of stalemate between countries that support GMOs and those opposed to their cultivation. The initiative aims to deliver on a promise made by European Commission President José Manuel Barroso before his reappointment last year (EurActiv 03/09/09).

At present, EU member states are only able to restrict GM crop cultivation under strict conditions, as authorisation licences are valid across the 27-country bloc, in accordance with the principles of the EU single market.

The plans would allow large-scale commercial planting in pro-GM countries such as Spain, the Netherlands and the Czech Republic, opening up new markets for major biotech companies, while at the same time legally endorsing existing GM bans in countries like Italy, Austria and Hungary.

Legislative proposals
The legislative proposal seeks to insert a new article (Article 26b) into the 2001 Directive on the Deliberate Release of GMOs. The proposed new article allows member states to prohibit cultivation provided that the reasons are not related to GMOs’ adverse effects on health and their environment, or to their socio-economic impact.

Health and environmental concerns can continue to be raised using the existing safeguard clause (Article 23 of the directive).

Meanwhile, prohibition on socio-economic grounds will be authorised under a new Commission Recommendation on guidelines to prevent GM contamination of conventional and organic crops, which will also be tabled tomorrow. The guidelines are set to replace 2003 Commission guidance on national co-existence measures.

Speeding up authorisation processes
The draft new texts also stress that member states should adopt “a more positive stance” on GMO authorisation at the risk assessment stage and “avoid” seizing the safeguard clause to address non-scientific issues.

The idea is to trade a broader right to restrict GM crop cultivation on national territory in exchange for some member states dropping their long-standing opposition to GM crops.

For years, EU member states in the Council of Ministers have been unable to reach a qualified majority for or against GMO authorisations, referring the matter back to the Commission, which has invariably authorised them via a special regulatory procedure.

NGOs denounce flawed proposal
Under the proposed deal, the GMO approval process would therefore speed up. But environmental NGOs Friends of the Earth and Greenpeace argue that restrictions on invoking Article 26b would limit the set of admissible grounds for bans mainly to ethical concerns.

According to them, national decisions based on ethical grounds are likely to be subject to legal challenges brought by crop companies due to the difficulty of defining “objective” criteria in the field of ethics, they stress. A legal opinion on the draft proposal commissioned by the two NGOs argues that it does not provide the legal certainty that member states need in order to adopt permanent bans on GMOs that have received EU approval.

NGOs also note that while the Commission proposals address the banning of GM crops by national governments, there is nothing to protect conventional and organic farmers in countries that decide to allow them.

Business worried about legal uncertainties, single market
EuropaBio, the European bio-industry association, says the Commission’s plan to “nationalise” the GMO issue should be seen as positive step.

But it notes that the “devil is in the detail,” arguing that the draft proposals could in practice cause legal uncertainty as farmers will be able to challenge their national authorities for restricting access to products, for example. The industry underlines the importance of allowing all EU farmers the same choice of technology once it has received scientific approval from the European Food Safety Authority (EFSA).

In this regard, EuropaBio notes that tomorrow’s proposals represent a move away from the EU single market as they would allow member states to restrict products on non-scientific grounds.

New environmental risk assessment guidelines under way
Before a GM plant can be cultivated in the EU it has to undergo an extensive Environmental Risk Assessment (ERA) to identify any possible adverse effects it may have on the environment. Following criticism from some member states, the European Commission mandated the European Food Safety Authority’s GMO panel to revise the agency’s guidelines on environmental risk assessments.

The guidelines assess, for example, the persistence and invasiveness of a GM plant, including plant-to-plant gene transfers, its impact on non-target organisms and criteria for setting up field trials.

However, a report analysing the EFSA’s draft guidelines for the environmental risk assessment of genetically engineered plants, presented by the Greens in the European Parliament last week (6 July), argues that the agency fails to properly address risks posed by genetically engineered plants.

The report stresses that there is a “basic misconception” in EFSA’s thinking, which assumes that genetically engineered plants are similar to those obtained by conventional breeding. The Greens argue they are fundamentally different.

Marco Contiero, GM policy officer at Greenpeace, added that if this concept of “substantial equivalence” were taken as a basis, it would be impossible to assess unpredictable long-term effects of GM plants. French Green MEPs José Bové and Sandrine Bélier said that together with the Commission’s upcoming new policy on GM crop cultivation, the EFSA’s current environment risk assessment proposals “would allow companies to reduce risk assessment to just a few studies and to speed up market authorisation for the EU territory overall”.

——-
Background

At present, EU member states are only able to restrict genetically modified (GM) crop cultivation under strict conditions as authorisation licences are valid across the 27-country bloc, in accordance with the principles of the EU’s single market.

Several member states have repeatedly invoked an EU safeguard clause enabling them to suspend the marketing or growth on their territory of GM crops that enjoy EU-wide authorisation, but the European Commission has never substantiated their applications and has always ordered the lifting of national bans.

In addition, the safety assessments performed by the European Food Safety Authority (EFSA) have come under criticism over the years (EurActiv 05/12/05 and 10/03/06). The EU executive has tried to introduce practical changes to the EFSA’s GMO-approval process and in spring 2008, it mandated the agency to revise its guidance for the long-term environmental risk assessment of GM plants (EurActiv 12/04/06).

The EFSA itself has been trying to improve the openness and transparency of its work. During the French EU Presidency in 2008, EU ministers also called for the long-term environmental risk assessment of GMOs to be improved.
http://www.euractiv.com/en/cap/%20EU-wants-GMO-dispute-to-end-news-496059