Issue of New Biotechnology – Transgenic Plant for Food Security

Pontifical Academy of Sciences and Agbiotech

November 30, 2010

The official scientific journal of the European Federation of Biotechnology (EFB) has published the proceedings of the Study Week on ‘Transgenic Plants for Food Security in the Context of Development’ held under the Pontifical Academy of Sciences at its headquarters in the Casina Pio IV in the Vatican from 15 to 19 May 2009. The Conference was attended by public scientists and was organized by Ingo Potrykus, ‘father’ of the Golden Rice, and Klaus Ammann (managing Editor).

See: http://www.ask-force.org/web/Vatican-PAS-Studyweek-Elsevier-publ-20101130/PAS-Studyweek-NBT-20101130.pdf

The summary conclusions of the Study Week are very supportive of agriculture biotechnology to improve sustainable development:

1. More than 1 billion of the world population of 6.8 billion people are currently undernourished, a condition that urgently requires the development of new agricultural systems and technologies.

 2. The expected addition of 2-2.5 billion people to reach a total of approximately 9 billion people by 2050 adds urgency to this problem.

3. The predicted consequences of climate change and associated decreases in the availability of water for agriculture will also affect our ability to feed the increased world population.

4. Agriculture as currently practised is unsustainable, evidenced by the massive loss of topsoil and unacceptably high applications of pesticides throughout most of the world. 

5. The appropriate application of GE and other modern molecular techniques in agriculture is contributing toward addressing some of these challenges.

6. There is nothing intrinsic about the use of GE technologies for crop improvement that would cause the plants themselves or the resulting food products to be unsafe.

7. The scientific community should be responsible for research and development (R&D) leading to advances in agricultural productivity, and should also endeavour to see that the benefits associated with such advances accrue to the benefit of the poor as well as to those in developed countries who currently enjoy relatively high standards of living.

8. Special efforts should be made to provide poor farmers in the developing world with access to improved GE crop varieties adapted to their local conditions.

9. Research to develop such improved crops should pay particular attention to local needs and crop varieties and to the capacity of each country to adapt its traditions, social heritage and administrative practices to achieve the successful introduction of GE crops.

The New Biotechnology open source Volume 27, 5, p. 445 – 717

http://www.sciencedirect.com/science/journal/18716784

Transgenic Plants for Food Security in the Context of Development

– Proceedings of a Study Week invited by the Pontifical Academy of Sciences, Vatican City, May 15-19, 2009

A joint publication of the invited participants of the Study Week as an open source Volume of NEW BIOTECHNOLGY of Elsevier and the Pontifical Academy of Sciences

Food security – sufficient nutritious food at all times to live a healthy and productive life – is one of the prime challenges for mankind. On the background of the public debate about the potential contribution from transgenic plants and the interest of the Vatican in the this challenge, the Pontifical Academy of Sciences was inviting an interdisciplinary group of independent public sector scientists, known for their scientific rigor and their engagement in social justice, to analyze the peer- reviewed state of science about transgenic plants and to explore the conditions under which the obvious potential of this technology could be made available in a better way for public good and the poor.

In summary, the program of the study week was designed (a) to present the potential of plant genetic engineering to contribute to food security, (b) to analyze the causes for the obvious exclusion of the public sector and projects from the delivery of public goods and (c) to develop concepts how to improve the situation to the benefit of the poor. The participants represented a wide and interdisciplinary range of scientific disciplines including philosophy, theology, political science, economy, agricultural law, agricultural economics, development economics, intellectual property rights, botany, ecology, plant pathology, evolution, botany, microbiology, agriculture, crop science, biochemistry, molecular biology, biotechnology, food safety, biosafety, and regulation.

Against this background the program of the study week was organized into the following sections,

http://www.ask-force.org/web/Vatican-Studyweek-Elsevier/Summary-Study-Week-Potrykus-2010.pdf

About the organizers and participants:

Prof. Dr. em. Ingo Potrykus ingo@potrykus.ch was the organizer of the study week; Mons. Prof. Marcelo Sánchez Sorondo, Chancellor of the Pontifical Academy of Sciences was inviting the 41 participants to Vatican City. Prof. Dr. em. Klaus Ammann klaus.ammann@ips.unibe.ch was the editor of the proceedings, together with Prof. em. Ingo Potrykus

List of participants including email addresses of the contributors:

http://www.ask-force.org/web/Vatican-Studyweek-Elsevier/Participants-List-english-email.pdf

The program and scientific contributions of the Study Week

Program of the May 2009 meeting with abstracts, invitation by the Pontifical Academy of Sciences

http://www.vatican.va/roman_curia/pontifical_academies/acdscien/2009/booklet_transgenic_34.pdf

Full bibliography (including open source links) of published papers and statements:

http://www.ask-force.org/web/Vatican-PAS-Studyweek-Elsevier-publ-20101130/PAS-Studyweek- NBT-20101130.pdf

This information was sourced through: AgBioView, November 30, 2010

How to Feed a Hungry World #hunger #food #FAO

‘Nature’ special issue: How to Feed a Hungry World
– Editorial, Nature, July 29, 2010 v 466, p531-532

Full issue at http://www.nature.com/news/specials/food/index.html
Producing enough food for the world’s population in 2050 will be easy. But doing it at an acceptable cost to the planet will depend on research into everything from high-tech seeds to low-tech farming practices.
With the world’s population expected to grow from 6.8 billion today to 9.1 billion by 2050, a certain Malthusian alarmism has set in: how will all these extra mouths be fed? The world’s population more than doubled from 3 billion between 1961 and 2007, yet agricultural output kept pace and current projections (see page 546) suggest it will continue to do so. Admittedly, climate change adds a large degree of uncertainty to projections of agricultural output, but that just underlines the importance of monitoring and research to refine those predictions. That aside, in the words of one official at the Food and Agriculture Organization (FAO) of the United Nations, the task of feeding the world’s population in 2050 in itself seems easily possible.

Easy, that is, if the world brings into play swathes of extra land, spreads still more fertilizers and pesticides, and further depletes already scarce groundwater supplies. But clearing hundreds of millions of hectares of wildlands most of the land that would be brought into use is in Latin America and Africa while increasing today’s brand of resource-intensive, environmentally destructive agriculture is a poor option. Therein lies the real challenge in the coming decades: how to expand agricultural output massively without increasing by much the amount of land used.

What is needed is a second green revolution an approach that Britain’s Royal Society aptly describes as the sustainable intensification of global agriculture. Such a revolution will require a wholesale realignment of priorities in agricultural research. There is an urgent need for new crop varieties that offer higher yields but use less water, fertilizers or other inputs created, for example, through long-neglected research on modifying roots (see page 552) and for crops that are more resistant to drought, heat, submersion and pests. Equally crucial is lower-tech research into basics such as crop rotation, mixed farming of animals and plants on smallholder farms, soil management and curbing waste. (Between one-quarter and one-third of the food produced worldwide is lost or spoiled.)

Developing nations could score substantial gains in productivity by making better use of modern technologies and practices. But that requires money: the FAO estimates that to meet the 2050 challenge, investment throughout the agricultural chain in the developing world must double to US$83 billion a year. Most of that money needs to go towards improving agricultural infrastructure, from production to storage and processing. In Africa, the lack of roads also hampers agricultural productivity, making it expensive and difficult for farmers to get synthetic fertilizers. And research agendas need to be focused on the needs of the poorest and most resource-limited countries, where the majority of the world’s population lives and where population growth over the next decades will be greatest. Above all, reinventing farming requires a multidisciplinary approach that involves not just biologists, agronomists and farmers, but also ecologists, policy-makers and social scientists.

To their credit, the world’s agricultural scientists are embracing such a broad view. In March, for example, they came together at the first Global Conference on Agricultural Research for Development in Montpellier, France, to begin working out how to realign research agendas to help meet the needs of farmers in poorer nations. But these plans will not bear fruit unless they get considerably more support from policy-makers and funders.

The growth in public agricultural-research spending peaked in the 1970s and has been withering ever since. Today it is largely flat in rich nations and is actually decreasing in some countries in sub-Saharan Africa, where food needs are among the greatest. The big exceptions are China, where spending has been exponential over the past decade, and, to a lesser extent, India and Brazil. These three countries seem set to become the key suppliers of relevant science and technology to poorer countries. But rich countries have a responsibility too, and calls by scientists for large increases in public spending on agricultural research that is more directly relevant to the developing world are more than justified.

The private sector also has an important part to play. In the past, agribiotechnology companies have focused mostly on the lucrative agriculture markets in rich countries, where private-sector research accounts for more than half of all agricultural research. Recently, however, they have begun to engage in publicprivate partnerships to generate crops that meet the needs of poorer countries. This move mirrors the emergence more than a decade ago of public partnerships with drug companies to tackle a similar market failure: the development of drugs and vaccines for neglected diseases. As such, it is welcome, and should be greatly expanded (see page 548).

Genetically modified (GM) crops are an important part of the sustainable agriculture toolkit, alongside traditional breeding techniques. But they are not a panacea for world hunger, despite many assertions to the contrary by their proponents. In practice, the first generation of GM crops has been largely irrelevant to poor countries. Overstating these benefits can only increase public distrust of GM organisms, as it plays to concerns about the perceived privatization and monopolization of agriculture, and a focus on profits.

Nor are science and technology by themselves a panacea for world hunger. Poverty, not lack of food production, is the root cause. The world currently has more than enough food, but some 1 billion people still go hungry because they cannot afford to pay for it. The 2008 food crisis, which pushed around 100 million people into hunger, was not so much a result of a food shortage as of a market volatility with causes going far beyond supply and demand that sent prices through the roof and sparked riots in several countries. Economics can hit food supply in other ways. The countries in the Organisation for Economic Co-operation and Development pay subsidies to their farmers that total some US$1 billion a day. This makes it very difficult for farmers in developing nations to gain a foothold in world markets.

Nonetheless, research can have a decisive impact by enabling sustainable and productive agriculture a proven recipe (as is treating neglected diseases) for creating a virtuous circle that lifts communities out of poverty.

Listen to podcast at http://www.nature.com/nature/podcast/index-2010-07-29.html

Road Map for Delivering GM Crops to the Third World?

A Search for Regulators and a Road Map to Deliver GM Crops to Third World Farmers
March 31, 2010

The New York Times
by Gayathri Vaidyanathan of ClimateWire

“In the transgenic crop fight, the foot soldiers on either side have been dug in for years. But despite the doubts about the necessity of GM, farmers have been voting with their seeds.”

http://www.truthabouttrade.org/news/latest-news/15812-a-search-for-regulators…

Key points in article:

Now and what is to come:

* transgenic crop acreage is increasing with developing nations and small farming ops being the newest adopters (up 7% over the last year according to the ISAAA)
* European Commission predicts that by 2015 there will be 120 commercial crops grown worldwide (currently there are 30)
* ~ 90% of 14 million farmers worldwide that use GM are ‘resource
poor’ farmers

Problem:

* As many as 100 developing countries lack tech and management capacity to review tests and monitor compliance of GMs

“Biosafety regulations of countries are usually modeled after the Cartagena Protocol on Biosafety, an international agreement that promotes a “precautionary approach.” It says that GM crops can be adopted if they are of minimal risk to the environment and human health. It lays out a clear set of guidelines to test for that risk. But guidelines alone don’t suffice.”

Truth_about_trade_tech